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E F F E C T  O F  F R I C T I O N  I N  A C O N T A C T  P R O B L E M  F O R  A P L A T E  W I T H  A P I N  

V. N. So lodovnikov  UDC 539.3.01 

A solution is obtained for  a contact problem concerning the tension of a rectangular elastic 
plate with a circular hole into which a rigid stationary pin has been inserted. There is a small 
gap between the hole and the pin, which is of circular cross section. Friction acts in the contact 
region in accordance with the Coulomb law. The finite-element method and the Boussinesq 
principle are used to determine the load that realizes a specified contact region. Two variants of 
boundary conditions on the contour of  the hole are ezamined. 

1. E q u a t i o n s  o f  t h e  P r o b l e m .  The  expressions for the strains in terms of the displacements, the 
relations of the  Hooke law, and the equilibrium equations for a plane stress state in the Cartesian coordinates 
xl, x2 [1, 2] are taken in the  form 

e l l  = Ul,1, e22 = u2,2, 2e12 = ul,2 + u2,1, ell = E - l ( a l l  - / /O"22),  (1.1) 

e22 = E- i (a22 - uala), e12 = (1 + u)E-la12, a11,1 + 0.12,2 = O, o'12,1 + 0"22,2 = O. 

Here E is the  Young modulus,  u is the Poisson ratio, ui are the displacements, eij are the strains, aij are the 
stresses ( i , j  = 1, 2), and the  subscripts 1 and 2 after a comma denote partiM differentiation with respect to 
xl and x2, respectively. As in [2], without  loss of generality we assume that  the  plate is of a unit  thickness 
that  remains constant.  

2. B o u n d a r y  C o n d i t i o n s .  We are given a rectangular plate with a circular hole of the radius R. In 
light of the symmet ry  of the  solution relative to the axis x2 = 0, we examine only the  upper half of the plate 
(Fig. 1). The  following boundary  conditions are assigned on its contour away from the edge of the hole: 

0 .11=0 .12=0  for z l = - - L h  0 ~ < z 2 ~ H ,  

u l = w ,  u 2 = 0  for x l = L 2 ,  0 ~ < z 2 ~ H ,  (2.1) 

0 for [ z2 = H, - L 1  ~ Zl ~ L2,  
u2 0, O'12 [ z 2 - - 0 ,  - L I ~ z l  ~ - R ,  R ~ x l  ~ L 2 .  

A perfectly rigid s tat ionary pin is inserted in the hole. The cross section of the pin is a circle with the 
radius R1 = R - c (e = eR,  where 0 < e << 1) and its center is at the point with the  Cartesian coordinates 
( - c ,  0). For any point on the  contour of the hole F, we have 

cos0 = p - l ( e  + cos~o), sin0 = p-1 sin~0, p = (1 + ~2 + 2~cos~o)1/2, (2.2) 

where 0 is the angle between the  axis Zl and a normal to the  contour of the pin Fc at the point closest to the 
point being examined (R, ~o) on F and (r, ~o) is a polar coordinate system (xl = r cos % z2 = r sin ~). The 
components of the  displacement up and us and forces qp and qe vectors on F, taken in projections on a normal 
and a tangent to Fc, are expressed via the components of the displacements u,  and u ,  and the stresses 0",,, 
0"~,,, and 0.T~, in the  polar coordinate system by the formulas 

up = Ur cos ~ - u~ sin a, u0 = Ur sin a + u~ cos a, (2.3) 
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q p = a r r c o s a - a r w s i n a ,  q 0 = a r r s i n a + a r ~ c o s a ,  a = ~ - 0 .  

The condition expressing the  fact that  the edge of the hole impenetrates within the contour of the pin 
is represented in the form [2] 

( p n  + up) 2 + u~ = (R § c c o s ~  + ur) 2 + (u~, - c sin ~ )2 />  R 2 (2.4) 

o r  

Up -}- ( 2 p R ) - l ( u  2 -{- u 2) ~ upc [uor = - c p - l ( 1  -[- cos~o)]. (2.5) 

Linearizing this condition, we obtain the inequality 

up >i u~.  (2.6) 
This inequality is stronger than (2.5) in the  sense tha t  displacements which satisfy (2.6) also satisfy (2.5). 

We shall formulate two vaxiants of boundary conditions on F. 
B o u n d a r y  C o n d i t i o n s  (a ) .  We assume that  Up = upc in the contact region ['1 and that  the edge 

of the hole is pressed against the  pin. Thus, q0 < 0. Let friction act on ['] in accordance with the Coulomb 
law [3]. Then the  permissible wlues  of the  forces axe bounded by the inequalities qo < 0 and [q0[ ~< P[qp[ 
or f l  = pqp -l- qo <~ O, f2 = pqp - qo <<. O, and F = f l f 2  >~ 0 (p  is the friction coefficient). Thus,  these 
values occupy an angle bounded by the straight lines f l  = 0 and f2 = 0 in the half-plane qp < 0 in Cartesian 
coordinates qp, q0- The  min imum possible angles of inclination of the vector of the forces (qp, qe) to ['c are 
given by the conditions f l  = 0 or f2 = 0. The  modulus of this vector is unrestricted by the friction law. 

Sliding of the pin with friction against the edge of the hole at a nonzero velocity u0 (the dot denotes 
partial differentiation with respect to the loading parameter  of the plate, which we shall refer to as the time 
r) can occur only when the values of the forces are located on one of the boundary lines and remain on this 
line during additional loading of the plate f i  = ]] = 0 or f2 = ]2 = 0. Energy dissipation may be nonnegative 
(Q = q0fi0 t> 0), while the frictional force (-q0) acts in the direction opposite to the  velocity ~0. The  absolute 
values of u0 during the sliding of the pin are independent of the values of qo and q0. The  nonslip u0 = 0 is 
realized at the remaining points of the contact region, where the slip conditions are not satisfied. 

The conditions up/> upc, art  = ar~ = O, and qp = q0 = 0 are satisfied on the free part of the edge of 
the hole ['2. 

Thus, the following boundary conditions are imposed on the contour of the hole: 
! 

Up=Upc,  uO =0,  qp < 0 ,  F > O  on [`1, 

,2o = O, if / < O, " 
up = upc, f = 0, qp < 0, Q/> 0, if ] = 0, on F], (2.7) 

q p = q 0 = 0 ,  u p ~ u p c  on F2. 
l l  / i i  

At each point F], as f we take a function f ;  or f2 that. is zero at this point; F = F1 U F2 and F1 = F ]U  F]. 
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The inequality Q >t 0 can be replaced by 60 >t 0 when f = fl = 0 and q0 = - #  qp > 0 and by 6o ~< 0 when 
t 

f = f2 = 0 and q0 = Pqp < 0. With allowance for qp < 0, the condition F > 0 on I" 1 is equivalent to the 
inequalities f l  < 0 and f2 < 0, which are linear in the sought functions. 

I II  

The partit ions F = I"1 U F2 and F1 = ['I U ['1 are completely determined by the  forces qp and qa at the 
current moment  of time. The  change in the external load acting on the plate at this moment  affects only the 

I I  I I I  

partitioning of F 1 into parts in which ] < 0 and ] = 0. The regions F1, [`1, and F2, the  form of the function 
II  

f (fl  or f2) on F1, and the forces qp and q0 on I"1 depend on the loading history of the plate and are found 
from the solution of the problem. 

If we insert the  expressions for up, u0, qp, and q0 from (2.3) and the expression for upc from (2.5) into 
(2.7) then with allowance for (2.2) the radical p is excluded from (2.7) and the coefficients at ur, u , ,  ar t ,  and 
a t ,  contain the parameter  e. Thus,  the  solution obtained with the use of (2.7) may depend nonlineaxly on e. 

B o u n d a r y  C o n d i t i o n s  (b). We approximate the nonpenetrat ion condition (2.4) by means of the 
inequality ur >1 Urc, where urc = - c  (1 + cos ~o). This inequality is stronger than  (2.4). Then the boundary 
conditions axe formulated similarly to (2.7), with the replacement of up, u0, qp, q0, and Upc by Ur, u , ,  ar~, a t , ,  
and u~c, respectively. Now, in contrast  to (2.7), the parameters of the gap e and e appear in the boundary 
conditions only in the expression for Urc and enter linearly into the terms tha t  are not dependent  on the 
sought functions. 

Let us introduce the  notat ion for the normM and tangential components of the displacements and the 
forces. The  notat ion is the  same for both variants of boundary conditions on F, taking the  form u = up, 
13 = UO, p = qp, q = qo, and uc = upe for conditions (a) and u = ur, v = u~,, p = ar t ,  q = ar~,, and Uc = urc 

for conditions (b). Then  the boundary conditions in both variants are represented in the form 
I 

u = u r  0 = 0 ,  p < 0 ,  F > 0  on F 1, 

u = u , ,  f=0, p<0, { 1)=0, if]<0, H 

Q > I 0 ,  i f ] = 0 ,  on F1, (2.8) 

p = q = 0 ,  u>~ur on F2. 
I I I  t l  

Here f l  = P P + q ,  f2 = P P - q ,  Q = q t~: and the regions r l ,  r l ,  and F2 and the  function f (f l  or f2) on [`1 
may be different for conditions (a) and (b). In variant (a), the boundary conditions (2.8) coincide with (2.7). 

The rate of energy dissipation ~j,, the power ~ of the tractive force P ,  and the  rate of change in strain 
energy of the plate ~e are connected by the relations 

H 

t t  0 r x 

O'11 dx2, 

where P is calculated for xl = L2. Integrating over r ,  we find that  ~ = ~ I  + ~e, 

~e = _/ 2(1 E_ u2) [el21 + 2vel]e22 + e~2 + 2(1 - u)e122] dxl dx2. 
fl 

The work done by the  force P is expended to the deformation energy of the plate Ce and the energy C/  
dissipated due to friction. 

Thus, in the presence of friction and a gap, we have two contact problems for Eqs. (1.1) with boundary 
conditions (2.1) and (2.8) in variants (a) and (b). At each moment  of time, their solution depends on the 
loading history of the plate. The  methods  used to solve the problems are similar in both variants. 

In the  case where there is no gap e = 0 and the displacement w increases monotonically from zero in 
the initial undeformed state of the  plate, we can use (2.8) to obtain the same boundary conditions for both 
variants 

! 

u = v = O ,  p < 0 ,  F > 0  on 1"1, 
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I /  

u = 0 ,  f = 0 ,  p < 0 ,  Q] >/0 on F1, (2.9) 

p = q = O ,  u>>.O on F2. 

The solution of the problem for Eqs. (1.1) with boundary conditions (2.1) and (2.9) is linearly proportional to 
I l? 

w. The regions F1, FI,  and ['2 are formed at the initial moment  of t ime immediately after the displacement w 
is assigned as small a value as desired, and they remain unchanged with an increase in the displacement. Each 
equality and inequality in (2.9) remains valid for any w > 0. Since f = ] = 0, for any w the function f also 

I I  

remains the same at each point on FI: f l  or f2. With allowance for the linear dependence of q and v on w, 
the condition Q >/0 in (2.8) is replaced by a condition stipulating tha t  the energy dissipation is nonnegative 
(01 = 0.Sq /> 0). 

The boundary conditions in the limiting problems (in the absence of friction) [2] follow from (2.8) and 
(2.9) as p --* 0. 

The contact problem for a plate with a pin was solved in [2, 4, 5] without allowance for friction and in 
[6] with allowance for Coulomb friction. In the second case, the difference in the displacements of the edge of 
the hole and the contour of the  elastic pin was, however, assigned without  allowance for the history of their 
interaction. 

3. F o r m u l a t i o n  of  E q u i l i b r i u m  P r o b l e m s  w i t h  a Spec i f i ed  C o n t a c t  R e g i o n .  We introduce a 
new variable r / =  1 - ~/ l r  (0 ~< r/~< 1) on the contour of the hole F. This variable increases along F in the 
left-to-fight direction from 7/= 0 at the point ( - R ,  0) to r / =  1 at the point (R, 0) (Fig. 1). 

Then,  examining the  loading of the plate by means of a monotonically increasing displacement of its 
! I I  

right side w, we assume tha t  in the  algorithm being developed the regions I"1, F1, and F2 on F occupy the 
respective segments 0 ~< rl ~< b, b < r / ~  I, and 1 < r/ ~< 1 with the  end points r / =  b and r / =  I. Thus, the 

I I I  I I  

contact region F1 = F 1 U r I is the  segment 0 ~< r/~< I. At all the points of F1, the frictional forces ( - q )  are 
I I  

assumed to act along F 1 in the  same direction. Thus, we assume tha t  the  function f (f l  or f2) is equal to 
zero. The  values of b and I may  depend on the displacement w, the  gap c, the  friction coefficient p, and the 
boundary conditions (2.8) or (2.9). 

The  solution of the  problem for Eqs. (1.1) with boundary conditions (2.1) and (2.8) is found with the 
length I of the contact region which increases monotonically in steps. The  value of l at the moment  0" + A t )  
is assigned at the  end of each step from r to (r  + A t ) .  The  rates of shear displacements on r at the end of a 
step are determined from the formula ~ = (v - v r ) / A v  (the values at the beginning of the step axe denoted 
by the subscript r ,  with no notat ion used to indicate the end of the step). We take I = 0 and v = 0 for r = 0 
as the initial conditions for the  first step. 

Having discarded the inequalities in (2.8), we obtain the following boundary conditions: 

u = u c ,  V = V r  for O~<r/<~b, 

u = u r  f = 0  for b<Tl<<.l , (3.1) 

p = q = O  for / < r / ~ <  1. 

Here the same function f (f l  or f2) is taken at all the points of the segment b < r/<~ I. The solution of the 
problem for Eqs. (1.1) with boundary conditions (2.1)-(3.1) (henceforth referred to as problem A) is used to 
determine the state of equilibrium of the plate at the end of a step with a specified contact region. 

Now we introduce two more problems A1 and A2, these problems differing from A only in the fact that  
the following are assigned in the  boundary conditions: 
- -  u = v = 0 in A1 and u = c - l uc  and v = c - l v r  in A2 for 0 ~< 7 /~  b, 
- -  u = 0 and f = 0 in A1 and u = c - l u c  and f = 0 in A2 for b < r/~< l, 
- - u l = l a n d u 2 = 0 i n A l a n d u l = 0 a n d u 2 = 0 i n A 2 f o r x l = L 2 , 0 < ~ x 2 ~ < H .  

Without  the inequalities, the boundary conditions (2.9) take the form 

u = v = O  ~ r  O ~ o ~ b ,  

u = 0 ,  f = 0  for b<~?<<.l, (3.2) 
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p = q = O  for / < q ~ < l .  

The problem for Eqs. (1.1) with boundary conditions (2.1) and (3.2) has a solution that  is linearly proportional 
to w. It coincides with problem A1 for e = 0 and w = 1, the values of b and I are identical in both problems, 
and the same function f (f l  or f2) is equal to zero on the segment b < q ~< I. We also seek values of b, 1, and 
f at which restrictions in the form of inequalities in (2.9) are satisfied. 

4. S o l u t i o n  of  P r o b l e m s .  The following algorithm is used at each moment  of t ime during loading of 
the plate to find the solution. The  plate is divided into Lagrangian finite elements (tetragonal, nine-node, and 
isoparametric [7]) (Fig. 1). Each subdivision contains about 160 finite elements and 1300 sought variables, 
i.e., the components  of the  displacements of the nodes of the elements. 

Using the principle of virtual displacements, we formulate the  systems of finite-element equations of 
problems A, A1, and A2. These systems have the same asymmetric matr ix of coefficients of the sought variables 
and differ from one another  only in their right sides, which are determined by the displacements assigned by 
the boundary conditions on the contour of the plate. The  Gauss three-point quadrature formula is used to 
calculate the integrals over an area of an element in the process of integration over each local coordinate. The 
systems of equations tha t  are formulated are solved by the Gauss elimination method  [7, 8] with allowance 
for the band nature of the coefficient matrix and the symmetry  of most  of this matrix relative to the principal 
diagonal. The  matr ix  is calculated and reduced to a triangular form only once for both problems A1 and A2. 

The hoop stresses a ~  at the nodes on F are found by interpolation of the  stresses calculated at the 
points of integration over the area of the elements. The  normal and shearing forces p and q are determined 
through the generalized forces acting at the nodes in accordance with the principle of virtual displacements. 

In the  finite-element formulation, we seek the solution of problem A as the sum of the solutions of 
problems A1 and A2 with the  coefficients w and c. This sum has the  form 

U = wU 0) + cU (2). (4.1) 

Here and below, U denotes the  global vectors of the sought variables, i.e., the components  of the displacements 
of the nodes of the elements; the superscripts 1 and 2 in parentheses denote problem A1 and problem A2, 
respectively. 

In accordance with (4.1), we have 

fb  = W f~l) -I- C f~2), Pl---- W p~l) -I- C p~2), (4.2) 

where the subscripts b and I denote the  values of f and p at the points t / =  b and t / =  l, respectively; we take 
the function f ( f l  or f2) tha t  is equated to zero in (3.1) on the segment b < t/~< l. 

In accordance with the Boussinesq principle [3, 9], we assume that  Pt = 0. We find from (4.2) that  

w = - c  p ~ 2 ) / p } D .  (4.3) 

Inserting (4.3) into (4.1), we resort to iteration to find the position of the point r/ = b at which fb = O. If 
the function f (f l  or f2) is chosen correctly, we obtain U as the solution of the  problem for Eqs. (1.1) with 
boundary conditions (2.1) and (2.8). The restrictions in the form of the inequalities in (2.8) are satisfied, and 
w is the displacement tha t  realizes the specified contact region. On the segment b < r/ ~< l we have f = 0, 
f r  <~ 0, and approximately ] = ( f  - f r ) / A r  i> 0, and therefore we should check only that  Q is nonnegative. 
The case ] < 0 is not examined here. The  transition from slip at the beginning of a step at the moment  ~" to 
nonslip at the end of the step, with satisfaction of the inequality ] < 0, can occur at points of the segment 
from r/---- br to 7/ ---- b for br  < b. It is possible to proceed to the next t ime step after the state of equilibrium 
of the plate at the  end of the  current step has been determined. 

We note tha t  in the finite-element formulation the boundary conditions are applied to a discrete set 
of nodes which includes the  points r / =  b and ~ = I. The  nonslip conditions u = uc and v = vr are assigned 
at the nodes for 0 ~< q ~< b, the slip conditions u = uc and f = 0 are assigned for b < q ~< l, and the free-edge 
conditions p = q = 0 are assigned for l < r/~< 1. Satisfaction of the equations fb  = Pl = 0 in accordance with 
the Boussinesq principle leads to satisfaction of the nonslip and slip conditions at the point q = b, and the 
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slip and free-edge conditions at the point r / =  I. In this sense, there is a continuous transition along F from 
one set of boundary conditions to the other. 

In variant (b), the vectors U(bl) and U(b2) are independent of c and ~. As follows from (4.1) and 
(4.3), the solution of the problem U(b) is linearly proportional to the gap c. In variant (a), the coefficients of 
the finite-element equations of problems A1 and A2 and the vectors U(al) and U (=2) depend on ~. Thus, the 
solution U(=) can depend nonlineaxly on ~. The superscripts a and b in parentheses denote boundary-condition 
variants (a) and (b), respectively. Problems A1 and A2 and the contact problem as a whole in variant (a) are 
solved anew with each new value of c. 

We shall solve separately problem A1 for variant (b). We choose the appropriate function f (fl  or f2), 
equal to zero on the segment b < r/ ~< 1, and we use iteration to find values of 1 = 1. and b = b. such that 

plbZ) = f~bz) = 0. Then, in accordance with the Boussinesq principle, we obtain U(bl) = U (hI) as the solution 
of the problem for Eqs. (1.1) with boundary conditions (2.1) and (2.9) for to = 1. 

5. C o m p u t a t i o n  R e s u l t s .  We pass over to dimensionless quantities by multiplying Zh z2, and r 
by the nondimensionalizing factor R -1, the displacements and the gap c by Lo ], the strains by ~,, = R L o  1, 
the stresses by •E -1, and the energies ~e and ~ f  and the work �9 by E - ] L o  2 (Lo is a constant having the 
dimension of length). We keep the previous notation for the nondimensionalized quantities. Now, we have 
R = 1, H = L1 = 2.5, L2 = 5, and c = we. The Poisson ratio is v = 0.3. 

In the equations and boundary conditions that have been changed to dimensionless form, c and ~ are 
taken as the dimensionless parameters associated with the gap in variant (a), xvhile only c is taken as such a 
parameter in variant (b). In both variants, we can use the prescribed values of c and ~ to determine ~ = ce -1 
and change back from the dimensionless forms of the sought functions to their dimensional forms. 

In the absence of a gap, we have c = ~ = 0. Since the solution is linearly proportional to w, we assume 
that to = 1. Returning to the dimensional quantities and assigning values to to and R, we find that L0 = to 
and ~v = R L o  1. 

Let us examine the solution of the contact problem with friction in the case of the absence of a gap, 
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TABLE 1 

Solution p 1 b 
UO) 0.3 0.15 0.1435 
U ('=) 0.3 0.1452 0.1422 
U(b) 

P r  o'~v, p 
0.07831 0.01797 0.1641 
0.07775 0.01785 0.1628 
0.07835 0.01796 0.1664 

obtained for Eqs. (1.1) with boundary conditions (2.1) and (2.9) for e = 0, p = 0.3, to = 1, P = 0.2472, 
l = I, = 0.4755, and b - b. = 0.01887 (the angles lrl and lrb are equal to 85.3 and 3.2 ~ respectively). The 
subdivision of the plate into finite elements is shown in Fig. 1. We have 7 elements across the width of the 
plate and 22 elements along the length, with 154 elements in all. 

The solid curves in Fig. 2 show the stresses *rr, * ~ ,  and * r ,  on F as a function of 7/. The sections 
of the dashed curves in Fig. 2a that  deviate from the solid curves show the values of *rr and ~rw~, in the 
absence of friction (~ = 0, p = 0, to = 1, P = 0.2317 and l = 0.4619). The distributions of ~rr are not cosine 
curves in either problem (with and without friction). We have art  = ar~ = 0 for 1 6 77 6 1. The maxima 
,w~ = cr~  are reached on the  free part  of F near the points r / =  l, while the maximum absolute values of 
#rr are reached at internal points of the contact region. Due to friction around the point I / =  0, there is a 
small region where O'rr < 0 and , ~  < 0. The value of ~ and the stress concentration factor k = Hp-I~ 
increase from ~ = 0.4280 and k = 4.615 for p = 0 to , ~  = 0.5281, and k = 5.338 for p = 0.3. The 
maximum absolute values of ~rrr decrease. The energy �9 I = 0.005288 is low compared to the strain energy in 
the plate O, = 0.1183 and amounts to 4.5%. In the absence of friction, we have �9 = ~ ,  = 0.1159. 

In the absence of a gap, the contact and nonslip regions become longer with increase in p for p ~< 1 in 
the solution of the contact  problem with friction. Here b is negligibly small as long as p < 0.2 (Fig. 3). The 
values of 1, P ,  and ~r~w increase almost linearly in relation to p. We have l = 0.5027 and b = 0.1893 for p = 1. 
The energy 0 f increases more slowly with increase in p. 

The solution U (b) of the  problem for Eqs. (1.1) with boundary conditions (2.1) and (2.8) in variant 
(b) was calculated upon variation of I from 0.03 to 0.45 in 31 steps for c = 1 and p = 0.3. We assumed zero 
shear displacements in the nonslip region for the initial value of l = 0.03. 

Figure 4 shows the functions I and b versus to. The slip regions are small for I ~< 0.24, and the diagrams 
of I and b nearly merge and are represented by a solid curve. When the length of the slip region is too small, 
we assume that  I = b. We used iteration to successively find the values of 1 = b = 0.1910 and 0.1997 such that 
art = ~rr~ = 0 at the point t / =  l = b. In the slip regions, we have f l  = 0, ~ > 0, and ar~ > 0 for 1 < 0.1910 
and f2 = 0, ~w < 0, and arw < 0 for l > 0.1997. Beginning with l = 0.24, the length of the nonslip region b 
decreases with increase in l. The energy �9 I is negligibly low as long as l < 0.24. 

The solid curves in Fig. 5 show the values of ~rr, Cr~,, and ar~ on F for 1 = b = 0.1997, w = 0.8045, 
and P = 0.1392. The dashed curve corresponds to l = 0.15. The values of ~rw in the contact region change 

from positive to negative during loading of the plate (Fig. 5b). 
The difference between the solutions U (=) and U (b) of the problem for Eqs. (1.1) with boundary 

conditions (2.1) and (2.8) in variants (a) and (b) is small when calculated for the same value of w. When w is 
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small, these solutions also differ negligibly from the solutions of the contact problems in variants (a) and (b) 
with the same gap in the absence of friction. Table 1 shows values of l, b, P, cbe, and a ~  calculated for c = 1, 

e = 0.05, and w = 0.4883 on the basis of the solutions U (~) and U (b) in the presence and in the absence of 
friction (# = 0). The boundary conditions in variant (a) are less restrictive for the plate than the boundary 
conditions in variant (b): the values of l, b, P, r and cr~ in U (~) are lower than the corresponding values 

in U (b). 
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